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Summary 

Main objective of this deliverable is to provide recommendations for homogenizing the information 
of seismic site characterization at European strong motion sites, as resulting from the efforts of Task 
7.2 in Network Activity #5 of the “Seismology and Earthquake Engineering Research Infrastructure 
Alliance for Europe – SERA” project (Project no. 730900, funded by the Horison2020 INFRAIA-01-2016-
2017 Programme). This document first describes the outcomes of an international questionnaire 
dedicated to define the most relevant site characterization indicators. Next, it provides guidelines at 
European level to homogenize and to define an overall quality metrics for site characterization 
information.  

Specifically, we define a list of indicators considered as mandatory for a reliable site characterization. 
We then propose a summary report containing the most significant background information for 
assessing the quality of each significant indicator. The quality metrics strategy is aimed at evaluating 
in a quantitative way the overall quality for a site characterization analysis.  

A draft version of these guidelines have been presented and discussed during an international SERA 
workshop held in L’Aquila (Italy) in March 2019 (https://sites.google.com/view/site-characterization-
workshop/home), and the present version takes into account the feedback from these discussions. 
This is the first attempt to move forward to reach high-level metadata for site characterization and 
the present proposition can be improved and modified after a few years of experience and feedback 
from users. 

1 Introduction 

Seismic site characterization of rock and soil properties is a need shared by various applications in 
seismology and geotechnical engineering, such as: (i) the site response at seismic stations and the 
calibration of strong-motion records for the estimation of attenuation relationships (GMPE), (ii) the 
evaluation of local site amplifications for realistic shaking estimates and for site-specific hazard 
assessment for critical infrastructures, and (iii) the soil classification for building code applications.  

In the last years, several efforts have been carried out at national and international levels to define 
standards and guidelines for single parameters related to the seismic site characterization (e.g., Foti 
et al., 2018; Hunter and Crow (ed.), 2012; SESAME Deliverable D23.12, 2004; Consortium of 
Organizations for Strong Motion Observation Systems, http://www.cosmos-eq.org). However, there 
is not yet a common way to exchange site characterization information, whereas setting-up standard 
practices for a comprehensive seismic characterization of a site, together with a clear evaluation of 
their quality, are becoming very important to reach high-level metadata for site characterization. 

Within this context, the 2017-2020 activities of the “Networking databases of site and station 
characterization” (WP7-NA5 of the SERA “Seismology and Earthquake Engineering Research 
Infrastructure Alliance for Europe” Horizon 2020 Project) aim at proposing a reliable and efficient 
European framework for site characterization, in close connection with actual and future 
requirements of seismic hazard and risk stakeholders (seismic network operators, earthquake 
seismologists and engineers, Eurocode 8).  

More specifically, the Task 7.2 (“Best practice and site characterization quality assessment”) was 
devoted to the definition of the necessary information for a reliable seismic site characterization 
analysis, and to propose an "objective" assessment of the quality of site metadata through a specific 
metrics. These activities were particularly addressed to improve the site metadata at the seismic 
stations of all permanent networks, in the Euro-Mediterranean area which appear to be highly 
heterogeneous if not completely absent. 
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The task has been divided in three parts: (i) the evaluation of the most relevant site effects indicators; 
(ii) the definition of a quality metrics on the site characterization parameters and (iii) the proposition 
of guidelines for a standardized reporting of the information on site indicators. 

As a first step, we have prepared a Questionnaire for collecting existing bibliography and best practice 
schemes to compute indicators for site effects characterization. We sent the Questionnaire to selected 
research groups of different countries, both partners of the SERA project (ISTERRE-CNRS, France; ETH, 
Switzerland; INGV, Italy; AUTH, Greece) and several external groups involved in site characterization 
(Caltech-USGS, USA; AFAD, Turkey; Virginia Tech USA; GFZ, Germany; ITSAK, Greece; University of 
Potsdam, Germany; UoT-University of Texas, USA; INGV, Italy), and collected back the answers. Each 
team provided the list of site-effects indicators, their importance for site effects assessment (based 
on expert judgment) and the preferred methods of analysis for retrieving them. The scientific 
community working on site characterization is using several site-effect indicators that can be grouped 
into (i) Scalar parameters (e.g. VS30 or resonance frequency), (ii) Depth-dependent profiles (e.g. shear-
wave Vs profile), (iii) Frequency-dependent curves (e.g. spectral ratio), (iv) Geological/Morphological 
descriptors (e.g. Surface geology/lithology unit) and (v) Advanced indicators (e.g. 2D or 3D aggravation 
factors, topographic amplification). The analysis of the Questionnaire revealed a consensus on several 
basic indicators (such as the resonance frequency, VS30 or the 1D Vs profile), together with a few key 
open issues related to the lack of standards on data acquisition, analysis methods and metrics, and to 
the scarce awareness of the quantitative evaluation of the uncertainty in the measurement results. 
The list of indicators and the associated bibliography can be found in Appendix A. 

The first Questionnaire allowed setting a fixed list of indicators for which we then asked to a broader 
audience, using an improved online Questionnaire (Fig. 1.1), to indicate for each indicator a) the best 
method of estimation, b) the level of difficulty for compute it and c) the approximate cost for deriving 
it. Finally, we asked to rank the selected indicators according to a priority scale (e.g. mandatory, 
recommended or optional indicator). 
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Figure 1.1: Online Questionnaire on Fundamental resonance frequency (f0) 

 

Seventy one teams or researchers, out of about 300 colleagues receiving a request of participation, 
contributed to this second phase, coming from different countries (69% Europe, 31% other countries; 
Fig. 1.2).  

 

 

Figure 1.2: Countries contributing to the online Questionnaire: colors are proportional to the number of 
researchers. 
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Although the mailing list of the invitation to fill the questionnaire was designed to homogeneous 
sample the various communities of different scientific fields (seismology, engineering, geotechnics, 
etc.; Fig. 1.3), the actual answers were somewhat unbalanced because of a lack of feedback mainly 
from the civil engineering community. 

 

 

Figure 1.3: Scientific fields declared by the online Questionnaire participants. Each researcher could indicate 
more than one field (blue) and the main field he/she feel to belong to (red). 

 

The analysis of the results was the basis of the presentation of the standard best-practice, the 
proposition of a quality metrics and the strategy for improvement of site condition metadata that are 
discussed in these guidelines. 

A draft version of these guidelines has been presented and discussed during an international SERA 
workshop held in L’Aquila (Italy) in March 2019 (11-12th of March, https://sites.google.com/view/site-
characterization-workshop/home). The present version takes into account the feedback from these 
discussions. Despite of the agreement on the principle to have such a guideline on site effect indicators 
and related quality metrics, not always there was a consensus on the very details: this is a proposition 
to move forward and fill the existing gap, but there could be adjustments after a few years of practice. 

  



SERA    Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe 

D7.2 - Best practice and quality assessment guidelines for site characterization8 
 

2 Indicators for site effect characterization 

The site-effect indicators, which were submitted to the scientific community working on site 
characterization through the online Questionnaire, are listed in Table 2.1. They can also be grouped 
into (i) Scalar parameters (e.g., VS30 or resonance frequency), (ii) Depth-dependent profiles (e.g. shear-
wave Vs profile), (iii) Frequency-dependent curves (e.g. spectral ratio or dispersion curve), (iv) 
Geological/Morphological descriptors (e.g. Surface geology/lithology unit) and (v) Advanced indicators 
(e.g. aggravation factors for 2D or 3D valleys, surface topography effects). See Appendix A for the 
reference bibliography related to the indicators and methodologies used in seismic characterization 
analysis. 

 

Table 2.1 - Description of site-effect indicators mentioned in the online Questionnaire 

Parameter Description Group 

f0  fundamental resonance frequency i 

f0, f1, ….fn frequency peaks of higher modes i 

A0, A1,.......AN 

Amplitude of the spectral peaks at the resonance frequencies (i.e. 

amplitude from spectral ratio HVSR and HVnoise or amplification from 

standard spectral ratio SSR) 

i 

Site Transfer Function 

(STF) 

Curve in the frequency domain describing the site amplification 

function at a site 
iii 

Preferential direction of 

ground motion  

Predominant direction of ground motion (for example computed by 

particle motions; rotated spectra; ellipticity vector by covariance matrix 

method; and/or time-frequency polarization analysis)  

iii 

Duration Lengthening frequency-dependent lengthening of seismic ground-motion duration  iii, v 

kappa0 high-frequency near-surface attenuation factor i 

Frequency-dependent 

attenuation (FDA) 

model for near-surface attenuation (k), Quality factor (Q)  or damping  as 

a function of frequency 
ii 

VS30 

The time-averaged shear-wave velocity Vs in the first 30 m of depth 

(following NEHRP and EC8, it is defined as travel time average in the 

uppermost 30m) 

i 

Vsz_below_30m 

Vsz_above_30m 

 travel time-average of Vs at a fixed depth below or above 30 m (z=5m, 

10m, 20m, etc.)  
i 

Vs_seismic_bedrock(*) Vs of the seismological bedrock  i 

H_seismic_bedrock(*) depth of the seismological bedrock i 

H_engineering_bedrock  
Depth of the engineering bedrock (e.g. defined as corresponding to Vs=800 

m/s for EC8) 
i 

Vs(z) Subsoil velocity profile of shear-wave (Vs) as a function of the depth (z)  ii 

Vp(z)  
Subsoil velocity profile of compression wave (Vp)  as a function of the 

depth (z)  
ii 

dispersion curve 
surface-wave dispersion curve; apparent phase-velocity or slowness as a 

function of frequency for Rayleigh or Love waves  
iii 

Rayleigh wave ellipticity Rayleigh wave ellipticity curve iii 

Building code Site  Class 

(soil class) 

Soil (site) class according to a specific Seismic Building Code (e.g. EC8, 

NEHRP...) 
i 
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Aggravation factor for 

basin and topography 

Ratio between 2D (or 3D or recorded motion) and 1D estimates for a given 

ground motion intensity measure: may be either a scalar (if it applies to a 

scalar IM, e.g., PGA or Arias intensity), or frequency dependent (e.g. for 

STF, or amplification factor on response spectra) 

i, iii, v 

Surface geology 
Geological/lithological information from available cartography (geological 

& thematic) and geological surveys 
iv 

Topographic factor 

Different interval values of slope and morphologic elements (landform), 

following Building Seismic Code provisions to compute the topographic 

code 

i, iv 

Geometrical parameter  
any parameter related with 2D or 3D structure (surface topography or 

underground lithological heterogeneity) 
i, iv 

geo-stratigraphic 1D log 

model 
stratigraphic column with geological unit description ii, iv 

H_water_table depth of the water table  i 

Non-linear degradation 

curves  

Curves characterizing the change of mechanical properties with shear 

strain (γ), in terms of normalized stiffness modulus (G/G0, where G0 is the 

small strain modulus), damping ratio (D), and/or excess pore pressure ratio 

(Ru = Δu/p’, where Δu is the excess pore pressure and p’ is the mean 

normal effective stress). 

ii 

Geotechnical parameter 

geophysical and geotechnical parameters; e.g. SPT, CPT, qu, Plasticity 

Index, CRR....: 

CPTU Piezocone test 

DMT Flat dilatometer test 

SPT Standard penetration test 

DPSH Dynamic probing super heavy test 

VT Vane test 

SLAB Static laboratory test 

ET Electrical tomography 

TDEM Time domain electromagnetic method 

ii 

(*) there is no consensus on the meaning of the expression "seismological bedrock" (see chapter 3.5) 

 

Following the results of the Questionnaire, 87% of researchers agreed on the list completeness. The 
13% of them, however, indicated that some parameters were missing, such as: 

● indicator on dependence of the site response to the earthquake location (back-azimuth, distance 
and depth); 

● indicator on 1D/2D/3D behavior: it is important to verify whether the site can be idealized using 
a 1D model (i.e. a stack of homogeneous layers overlying the bedrock) or 2D/3D model, meaning 
that the lateral variability of geological formations affect the seismic behavior; 

● indicator on soil-structure interaction (mainly for strong motion stations installed in, or near to, a 
building). 

Other issues are related to the unclear definition of some indicator (e.g. not-unique interpretation of 
seismic bedrock) and to the difficulty of studying the seismic behaviour of rock sites. Last but not least, 
attention was drawn on the importance of providing the uncertainties accompanying each value, 
wherever available, to show the confidence we have in that particular parameter’s value for that 
particular location; unfortunately, this issue is often neglected, leading to very heterogeneous site 
metadata, which is most often overlooked by down-stream users of waveform data, and may lead to 
biased, or oversold - if not wrong - results. 
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Following the ranking of the selected indicators performed by the Questionnaire participants, the 
indicators have been sorted according to the different degree of importance for contributing to the 
site characterization (e.g. mandatory, recommended or optional; Fig 2.1). 

 

 

Figure 2.1: Answers of participants to the questionnaire assessing the different degree of importance of the 
indicators. 

 

According to the Questionnaire results, almost all indicators were considered to be "recommended" 
for a reliable site characterization by the majority of participants, whereas only a few of them were 
considered as "mandatory" (Table 2.2). 

 

Table 2.2: List of indicators whose percentage of “mandatory” answers exceeds 40% (percentage is related to 
the Questionnaire answers). 

INDICATOR MANDATORY 

F0 >80% 

VS(Z) >60% 

VS30 >60% 

SURFACE GEOLOGY >60% 

DEPTH SEISMIC BEDROCK >50% 

DEPTH ENGINEERING BEDROCK >50% 

SOIL CLASS >50% 

SITE TRANSFER FUNCTION >40% 

VS SEISMIC BEDROCK >40% 

HV CURVE >40% 



SERA    Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe 

D7.2 - Best practice and quality assessment guidelines for site characterization11 
 

3 Indicator description 

In the following we thus focus on the parameters considered as mandatory by the majority of the 
involved scientific community. Based on Table 2.2, we decided to select the indicators having a 
consensus greater than 50%: f0, VS(z), VS30, Depth of seismological and engineering bedrock, Surface 
geology, Soil class. For each indicator, we describe: 

● the data type, data acquisition and processing techniques to derive it, together with the feasibility 
of its evaluation and the estimated cost (from the questionnaire results); 

● the proposition of a template for the description of data acquisition and processing details. 

In the best case, the value of an indicator, referred to a site characterization study, is supplied with a 
thorough description of the data acquisition and methods and the detail of the processing (complete 
full report). Some examples of complete report for different geophysical measurements can be found 
for station IV.ROM9 report (2018) and SED-AIGLE report (2019). An example of a complete geological 
report is IT. PTV-PONTEVICO report (2018).  

On the opposite, there are cases where only a value is available, without any information on the data, 
processing techniques and uncertainties. Both situations can be found in seismic network databases. 
There is then a need to associate the reported value of the indicators with some standard information; 
this is necessary to attribute a quality assessment to the indicator inferred for a specific site. 

The template proposed in these Guidelines represents the report intermediate between the two 
extreme cases, having the minimum background information for assessing the quality of the results 
of a computed indicator at a specific site. It is not intended to replace a complete site characterization 
report, which may follow other much more specific guidelines, but simply to offer a handy framework 
to homogenize information especially for seismic network metadata, and to allow an assessment of 
their quality as objective as possible.  

The general structure of the intermediate report that should be associated to the provided indicator 
is summarized in Table 3.1. It contains 4 main sections: the first one with general information, the last 
one with the resulting value of the indicator including uncertainty estimation and, in between, the 
description of the main parameters of the data acquisition and analysis.  

The template for each selected mandatory indicator is reported in Appendix B. 

 

Table 3.1 - General structure for the intermediate report  

SECTION CONTENT 

GENERAL 

Authors 
Contacts 
Link to reports, papers, etc 
Coordinates of the site 

DATA ACQUISITION 

Date of experiment 
Location 
Equipment 
Instrumental setting 

DATA ANALYSIS 
(PROCESSING METHODS AND PARAMETERS) 

Methodology and general processing 
parameters 
Results 
Uncertainties and limits of resolution 

RESULT Average estimate and standard deviation  
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3.1 Fundamental resonance frequency, f0 

The survey indicated two main methods to obtain the fundamental resonance frequency (f0): one 
using ambient vibration measurements and the other from earthquake recordings (Fig 3.1). Some 
teams do propose to obtain f0 from numerical simulation, but as a) they are not so numerous (less 
than 30%, see Figure 3.1) and b) such models are based on other site information (e.g. velocity profile), 
we decided not to take it into consideration.  

According to the Questionnaire results, the easiest way to compute it is from noise measurements, 
with an indicative cost of less than 1 keuro (actually, it also turns out to be the easiest technique 
amongst all those listed to derive one of the seven "mandatory" indicators, see Figures 3.2 to 3.6 ); 
they should be performed in a relatively wide area, in order to provide useful information about the 
general setting of the site without any large impact on costs. However, the interpretation of the noise 
results is not always straightforward (e.g. Uebayashi, 2003; Mucciarelli et al., 2005; Bonnefoy-Claudet 
et al., 2009; Özalaybey et al., 2011; Uebayashi, 2003; Molnar et al., 2018). 

The reliability increases if earthquake data are used, because they display the site behavior under the 
ground motion shaking (e.g. Haghshenas et al., 2008; Pilz et al., 2011; Cultrera et al., 2014 ). However, 
for earthquake data acquisition in areas of low-seismicity, there could not be enough data over a 
reasonable time period of the experiment, making it more expensive. 

The template of the intermediate report of f0 is in Appendix B. 

 

 
Figure 3.1: Type of data, feasibility and cost for f0 estimation from Questionnaire results. Cost estimates do 
not include equipment cost: it is only the amount required to perform the measurements and interpret the 
results, assuming that the contractor already has appropriate equipment. 
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3.2 S-wave velocity profile, Vs(z) 

Two main classes of methods are recommended to obtain the subsoil velocity profile of shear-wave 
(VS) as a function of the depth (z), according to either non-invasive (active and/or passive seismic 
methods) or invasive (measurement in boreholes) measurements (Fig 3.2).  

According to the Questionnaire results, the non-invasive methods seem to be more and more widely 
used compared to the invasive ones, probably because of their cost, which is generally considered 
lower. It however spans the whole range 1 - 20 k€, probably depending on the site configuration and 
thickness. The feasibility index and cost of using invasive methods is also highly variable, as it strongly 
depends on investigation depth and on local geological conditions. 

A common source of error is related to the investigation depth, as some investigators erroneously 
provide velocity values at deeper depths than it is allowed by the data they have collected (e.g. for 
surface-wave methods, the depth of investigation should be limited to some fraction of the maximum 
wavelength measured, which is always a function of the sensor array aperture). Finally, Vs profile 
measurements at a rocky site should be performed with special care. 

The template of the intermediate report of Vs profile is in Appendix B. 

 

 

Figure 3.2: Type of data, feasibility and cost for VS(z) estimation from Questionnaire results. Cost estimates do 
not include equipment cost: it is only the amount required to perform the measurements and interpret the 
results, assuming that the contractor already has appropriate equipment. 

 

3.3 Time-averaged S-wave velocity in the upper  30 m (VS30)  

The NA5 survey indicates five main methods to obtain the time-averaged shear-wave velocity profile 
at 30m (VS30): two of them use in-situ Geophysical or Geotechnical measurements, and the others 
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obtain inferred values from correlations with other kinds of information (Digital Elevation Model, 
DEM; Geology; Hybrid models, e.g. geology‐slope or geomorphic terrain‐based proxy; Fig 3.3). 
However, these methods cannot be considered as equivalent: Figure 3.3 indicates that direct 
measurements (using geophysical or geotechnical methods) should be preferred with respect to the 
inferred proxies. The geophysical and geotechnical methods are thus more widely recommended than 
the ones from proxies, though they are more expensive.  

In general, non-invasive geophysical measurements represent an average condition for the site, 
whereas invasive or geotechnical measurements are punctual and usually shallow. On the other hand, 
estimation from secondary information (i.e. proxy models) using slope, geology, and geotechnical 
information is easier in implementation, but may result in significant biases and much larger 
uncertainties in VS30. 

The template of the intermediate report of VS30 is in Appendix B. 

 

 

Fig 3.3 - Type of data, feasibility and cost for VS30 estimation from Questionnaire results. Cost estimates do not 
include equipment cost: it is only the amount required to perform the measurements and interpret the results, 
assuming that the contractor already has appropriate equipment. 

 

3.4 Surface geology 

Surface geology can be inferred through available cartography (geological, lithological, etc.) or specific 
geological field surveys (Fig 3.4). The use of already existing cartography is easier and less expensive 
than field survey, though often less accurate because of the lower resolution of generally available 
geological information.  

The accuracy of the geological description depends on the cartography resolution and profiles, as 
geological cross-section and stratigraphic sequence (if available) can be used to infer a preliminary 
model representative of an area.  
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The template of the intermediate report of surface geology is in Appendix B. 

 

 

Figure 3.4: Type of data, feasibility and cost for Geology estimation from Questionnaire results. Cost estimates 
do not include equipment cost: it is only the amount required to perform the measurements and interpret the 
results, assuming that the contractor already has appropriate equipment. 

 

3.5 Depth of bedrock 

The survey indicated that there is no consensus on the understanding of what is “bedrock”, and 
therefore on the corresponding depth. We thus considered two main different definitions: 

● "Seismological" bedrock corresponds to the geological unit that, because of the impedance 
contrast with the upper layers, controls the lowest  (fundamental) resonance frequency peak (f0; 
Fig. 3.5); note however that some scientists  consider the seismological bedrock as the crustal unit 
where the S-wave velocity is reaching a "crustal" value between 3.5 and 4.0 km/s.  

● “Engineering” bedrock corresponds to the unit where a conventional Vs value is first exceeded. 
This conventional value may vary from one country or practice or code to another and must clearly 
stated in the report (typical values are 760 m/s, 800 m/s or 1500 m/s). 

We identified two main methods to infer the bedrock depths: Non Invasive (active and/or passive 
seismic methods) and Invasive (measurement in boreholes). 

According to the Questionnaire’s answers, non-invasive measurements seem to be more widely used 
than the invasive ones, and they are considered as less expensive. Moreover, the cost of invasive 
methods is strongly dependent on bedrock depth. In general, a deep bedrock depth is difficult to 
obtain and in these cases complementary geophysical and geological studies could be required to 
constrain it. 
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The comparison of Figure 3.5 with Figures 3.1 to 3.6 also indicates that seismological bedrock depth 
is considered as the most difficult to get amongst all site indicators. 

The template of the intermediate report of bedrock’s depth is in Appendix B. 

 

 

Fig 3.5 - Type of data, feasibility and cost for the estimation of Seismic Bedrock Depth from Questionnaire 
results. Cost estimates do not include equipment cost: it is only the amount required to perform the 
measurements and interpret the results, assuming that the contractor already has appropriate equipment. 
Histograms for engineering bedrock are not reported because they are equal to the seismological bedrock 
results. 

 

3.6 Building-Code Site class (soil class) 

Four main methods are available to derive the Building-Code Site Class (alias Ground Type, in Eurocode 
8, or Soil Class in some national building codes): Geophysical measurements, Geotechnical 
measurements, DEM (Digital Elevation Model) and Geology. As shown in Figure 3.6, there are far from 
being considered equivalent in terms of reliability; the geophysical and geotechnical methods are 
more widely recommended than the ones from DEM and geology, though they are more expensive 
and of more difficult feasibility (Fig. 3.6). 

In the current practice, mostly VS30 or geological description are considered to obtain the site 
classification following the seismic code prescription. This makes the soil class indicator non-
independent from some of the other mandatory indicators. 

The template of the intermediate report of Soil class is in Appendix B. 
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Fig 3.6 - Type of data, feasibility and cost for the estimation of Soil Class from Questionnaire results. Cost 
estimates do not include equipment cost: it is only the amount required to perform the measurements and 
interpret the results, assuming that the contractor already has appropriate equipment. 
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4 Quality metrics  

 

4.1 State of the art 

The overall quality metrics generally depends on the number and quality of information that can be 
recovered at a target site, and a site characterization study is considered more reliable when a larger 
number of surveys is available for one target site. However, even though some important good-
practice guidelines or reference papers exist for a given single indicator (e.g., resonance frequency, 
surface waves based-methods, cross-hole and down-hole methods; e.g. ASTM D4428M-00, 2000; 
ASTM D7400M-08, 2008; Socco and Strobbia, 2004; Bard et al., 2010; Hunter and Crow, 2012; Foti et 
al., 2018; Molnar et al., 2018; see Appendix A for further bibliography), standardized procedures to 
qualify and quantify overall quality of site characterization information at a given strong motion site 
are missing at European and even world scales.  

Indeed, it is not always easy to combine all the data provided by different surveys (geological, 
geophysical and geotechnical studies) for converging in a non-ambiguous site characterization model. 
This requires to evaluate both (i) the reliability of the various site characterization indicators provided 
by a single or various range of methods, and (ii) then the consistency among the indicators according 
to the current knowledge and experience feedback of the community.  

(i) Regarding the reliability of a single indicator estimated by various methods of acquisition or 
processing, a Vs velocity profile, VS30 or resonance frequency of a site can be derived using different 
types of data and processing methods, without anyhow any guarantee of consistency between 
estimates since each method is characterized by its own data quality, resolution and limits. Few 
benchmarks have been carried out so far, mainly on the shear-wave profiles extraction performance 
through non-invasive and invasive methods (Asten and Boore, 2005; Cornou et al., 2009; Moss et al., 
2008; Cox et al., 2014; Garofalo et al., 2016a; Garofalo et al., 2016b; see Appendix A for further 
bibliography). These benchmarks have outlined the ability of non-invasive and invasive methods to 
provide consistent results together with an estimate on inter-analysts variability.  

(ii) Consistency among the indicators is  most generally addressed in case-study papers focused on 
deriving a ground velocity model (among many others, Pitilakis et al., 1999; Magistrale et al., 2000; Di 
Giulio et al., 2008; Koketsu et al., 2009; Pagliaroli et al., 2014; Salloum et al., 2014; Kruiver et al., 2017; 
see Appendix A for further bibliography). Other studies are focused on correlation between various 
indicators: e.g. geologic‐and terrain‐based proxies and VS30 (e.g. Wald and Allen, 2007; Yong and al., 
2012; Lemoine et al., 2012; Stewart et al., 2014; Wills et al., 2015; Ahdi et al., 2017; see Appendix A 
for further bibliography), SPT-N blows and Vs profiles (e.g. Hasancebi, N., & Ulusay, R., 2007; Dikmen, 
2009; Kuo et al., 2011), VS30 and phase velocity at a given wavelength (e.g. Martin and Diehl, 2004; 
Albarello and Gargani, 2010; see Appendix A for further bibliography). 

The lack of standardized procedures to assess quantitatively the quality of site characterization 
information at a given site prevents an homogenous grading of site characterization information at 
strong motion sites and at seismic network stations in general. As a consequence, there is no quality 
information for site characterization in national or international strong motion web sites. When 
available, the quality grading is related to the method used to extract a given single indicator as in the 
European Strong Motion database (ESM).  

The core information to derive a quality index that account for both the reliability of single indicators 
and the consistency between various indicators  is to be found in the site characterization report at a 
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given strong motion site. A full report should describe in detail instrumental acquisition, data 
collection, processing parameters and methods, and final interpretation. At European level, some 
available public reports can be found in ESM (European Strong Motion database; 
https://esm.mi.ingv.it). At national level, only very few networks also make available site 
characterization reports (e.g. Switzerland http://stations.seismo.ethz.chl; Italy http://itaca.mi.ingv.it; 
Turkey http://kyhdata.deprem.gov.tr). These reports can be very detailed when specific 
measurements at the site are carried out, but most often direct measurements either are not 
available, or have not been performed, for many stations in Europe, and then the level of information 
provided by such report can be poor. When specific field surveys are missing, proxies based on geology 
and/or topography are generally used to define the soil class of a site or of a strong-motion station.  

 

4.2 Overall quality for site characterization  

The aim is to propose a strategy to evaluate quantitatively and “objectively” the overall quality of the 
site characterization analysis for a site. This is the first attempt in Europe and, certainly, the present 
proposition will be improved after a few years of experience and feedback from users. The present 
guidelines are to be considered as proposing both a general framework and a specific implementation 
with some choices which may be discussed and modified in the future. 

We define the overall quality metrics according to the 7 indicators defined as mandatory on the basis 
of the SERA international questionnaire previously described (chapter 2). The overall quality grading 
is a combination of the following quality indices: 

● reliability of each single indicator (quality_index#1); 
● weighted sum of the quality of all single indicators (quality_index#2); 
● consistency between the values of different indicators (quality_index #3).  

The final quality index is an arithmetic average between quality_index#2 and quality_index#3.  

The evaluation of the reliability of each single indicator could be performed either by the 
practitioner(s) in charge of site characterization, or by a network operator or somebody else duly 
trained in the use of the quality index. Meanwhile, the evaluation of the consistency between various 
site indicators should be performed by the network operators in charge of providing authoritative 
metadata. 

4.2.1. Quality_Index1 (single indicator) 

Quality_index#1 (Q_Index1 hereinafter) varies from 0 to 1 and refers to a single mandatory indicator. 
It is defined by the following expression 

Q_Index1 = [ (a + b + c)  d ] / (amax + bmax + cmax)    (eq. 1) 

where the definition and the possible values of a, b, c and d are summarized in Table 4.1 and detailed 
in the following sections. 

 

 

 

Table 4.1: Values of factors in eq. 1 for computation of Quality_Index1. 

https://esm.mi.ingv.it/
http://stations.seismo.ethz.ch/opencms8/opencms/seddb/station_information_public/currentstations.html
http://itaca.mi.ingv.it/ItacaNet_30/#/home
http://kyhdata.deprem.gov.tr/
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FACTOR DEFINITION POSSIBILITY EXPLANATION VALUE 

A  
Method of 

acquisition and 
analysis 

Documented method 
through several papers 

The method of acquisition and analysis to 
estimate the target indicator is well documented 

through several peer-reviewed papers 
1 

Undocumented method 
The method of acquisition and analysis is not 

published 0 

B  
Estimation of 

indicator 

Direct evaluation 
The evaluation is based on specific field 
experiments (see Table 5.3 for direct and 

inferred examples) 
2 

Inferred values  
The evaluation is based on inferred values from 

proxies, empirical relationships or modeling 0 

C  
Reliability  

on the value 

Yes 
The indicator (its value or description) is very 

reliable 1 

Partial/moderate 
confidence 

In case of partial/moderate confidence 0,5 

No 
The indicator, although described in the report, is 

not reliable 0 

D  
Completeness of 

the report 

Complete 
a well-documented report for the specific 

indicator is present 1 

Incomplete/partial 
report associated to a site is present, but the 

information is partial and not very detailed 0,5 

No report The value is provided without any documentation 0 

 

 

(a) Method of acquisition and analysis [1 or 0] - It defines the reliability of the method of acquisition 
and analysis to infer the value of the target indicator, on the basis of peer-reviewed papers (Table 
4.2). 

 

 Table 4.2. Example of peer-reviewed papers connected to each indicator to estimate (a) in eq. 1. Other 
reference papers can be found in Appendix A. 

INDICATOR EXAMPLE OF PEER-REVIEWED PAPERS OR REPORTS  (A=1) 

F0 
Nakamura et al., 1989; Field and Jacobs, 1995; SESAME, 2004; Picozzi et al., 2005; Haghshenas 
et al., 2008; Molnar et al., 2018;   

VS(Z) 

 
SEISMOLOGICAL BEDROCK 

DEPTH 

 
ENGINEERING BEDROCK 

DEPTH 

Albarello et al. 2011; Asten & Hayashi, 2018; ASTM  D4428M-00, 2000; ASTM  D7400M-08, 
2008; Dikmen, Ü., 2009; Fäh et al., 2010; Foti et al., 2018; Foti et al., 2011; Garofalo et 
al.,  2016; Wathelet et al., 2008; Chakravarthi & Sundararajan, 2007 

VS30 
SITE CLASS 

Ahdi et al., 2017; Albarello and Gargani, 2010; Anbazhagan et al., 2013; Boore et al., 2011; Foti 
et al., 2018; Kuoet al., 2011; Lemoine et al., 2012; Martin & Diehl, 2004; Stewart et al., 2014; 
Wald & Allen, 2007; Wills et al., 2015; Yong, A., 2016; Yong et al., 2012 

SURFACE GEOLOGY Park and Elrick, 1998; Wills and Clahan, 2006 
 

(b) Estimation of indicator [2 or 0] - It defines the way of evaluating the target indicator: direct or 
proxy. The evaluation is direct if derived from in-situ field experiments; whereas it is inferred if derived 
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from proxies or empirical relationships (Table 5.3). Because the terms “direct” and “inferred” can be 
considered ambiguous, we provide for clarity some examples: 

● If the target indicator is f0, both a single-station (noise or earthquake recordings) or extensive 
noise measurements are considered as a direct evaluation (b = 2). 

● If the target indicator is the Vs profile, measurements such as DH, CH, PS-logging, surface-
wave inversion are considered a direct evaluation (b = 2). 

● If the target indicator is the surface geology, a geological field survey at the site is a direct 
evaluation (b= 1). If it is already available a detailed cartography (scale finer or equal to 
1:10.000), then b=1; when the surface geology is derived from large scale cartography (i.e. 
1:100.000), then  b= 0.   

Other examples of direct and inferred evaluations are reported in Table 4.3. 

The way of evaluating the target indicator is considered to be a very important issue in quality 
assessment, as there is a natural trend for almost all funding agencies to favor the installation of 
instruments and to neglect the issue of the quality of metadata, which are however critical for data 
analysis. That is why this item is given a binary value, 2 for actual measurements, and 0 for simply 
inferred values. 

 

Table 4.3: Examples of criteria for direct or inferred evaluation of the target indicator to estimate (b) in eq. 1  

INDICATORS DIRECT EVALUATION (B=2) INFERRED EVALUATION (B=0) 

F0 

H/V on microtremors or 
earthquakes 
Standard Spectral ratio  on 
earthquakes 

1D SH response modelling from 1D soil column  

VS 
Surface-wave methods 
CH, DH, P-S logging 

Empirical relationship between  geotechnical 
parameters (e.g. SPT, CPT) and Vs

1 
 

GEOLOGY 

Geological field survey at the 
site 
detailed geological map 
(1:10.000) 
 
Geological survey or 
geological  log close to the 
station 

Large scale geological map (i.e. 1:100.000) 

ENGINEERING BEDROCK 

DEPTH 
Surface-wave methods 
CH, DH, P-S logging 

Empirical relationship between  geotechnical 
parameters (e.g. SPT, CPT) and Vs

1  
Inferred from surface geology (geological cross-
sections) 

SEISMOLOGICAL BEDROCK 

DEPTH 

Surface-wave methods 
CH, DH, P-S logging 
Gravimetry study3 

Empirical relationship between bedrock depth and f0
2  

Inferred from surface geology (geological cross-
sections) 

VS30 
Surface-wave methods 
CH, DH, P-S logging 

Empirical relationship between  geotechnical 
parameters (e.g. SPT, CPT) and/or  Vs30 and/or  Vsz

1 
 
From geology and/or  topography and/or terrain based 
approach4  
 

SOIL CLASS 
Surface-wave methods 
CH, DH, P-S logging 

Empirical relationship between  geotechnical 
parameters (e.g. SPT, CPT) and/or  Vs30 and/or  Vs

1 
 
From geology and/or topography and/or terrain based 
approach4  
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1 Among others, Ohsaki and Iwasaki, 1973; Imai, 1977; Ohta and Goto, 1978; Seed and Idriss, 1981; Chapman et al., 2006; Hasancebi and 
Ulusay, 2007; Li and Tsai, 2008; Dikmen, 2009; Kuo et al., 2011; Boore 2004; Boore et al., 2011; Xie et al., 2016 
2 Among others, Ibs-Von Seht, 1999; Parolai et al., 2002; Hinzen et al., 2004  
3 Among others, Litinsky, 1989; Stephenson et al., 1993; Abott and Louie, 2000; Zor et al., 2011 
4 Among others, Wald and Allen, 2007; Lemoine et al., 2012; Yong et al., 2012; Stewart et al., 2014; Wills et al., 2015; Xie et al., 2016; Ahdi 
et al., 2017; Forte et al., 2019 
 
(c) Reliability on the value [1, 0.5 or 0] - It indicates the confidence on the single indicator (or in other 
terms, the reliability of its value) and it is based on the available information summarized within the 
intermediate report (see Chapter 3 and Appendix B). Specifically, reliability takes into account criteria 
on data measurements (including the performance and suitability of the used equipment), reliability 
of the used methods (including their resolution and commonly admitted rules-of-thumb), 
repeatability of measurements and appropriate usage of empirical relationship available in literature 
when indicators are inferred (e.g. VS30-surface topography, Wald and Allen, 2007; VS30- Vs10, Boore 
et al., 2011; VS30-phase velocity at 40 m wavelength; Martin and Diehl, 2004). Examples of 
recommendations to estimate confidence on the value of the indicator are listed in Table 4.4. These 
recommendations are extracted from existing guidelines (e.g. SESAME, 2004; Hunter and Crow, 2012; 
Foti et al., 2018; see Appendix A for further bibliography). 

 
Table 4.4. Some examples of recommendation to estimate (c) in eq. 1 for each indicator for “data acquisition” 
experiment involving ambient noise measurements and geological survey. 

INDICATORS HIGH RELIABILITY (C=1) INTERMEDIATE RELIABILITY  (C=0.5) LOW RELIABILITY (C=0) 

F0  

sensor cut-off frequency < f0 
 
time window length > 10/f0 
 
number of time windows > 10  
 
f0 fulfills all SESAME criteria 
 

sensor cut-off frequency/5 < f0  < 
cut-off frequency 
 
5/f0 < time window length < 10/f0 
 
3 < number of time windows < 
10  
 
f0  fulfills some SESAME criteria 
only 
 
Measurements performed 
during windy days with an 
unburied or uncovered  sensor 
and  f0 > 1 Hz 

cut-off frequency/5 > f0 
 
time window length < 5/f0 
 
number of time windows < 
3 
 
f0  does not fulfill any 
SESAME criteria 
 
Measurements performed 
during windy days with an 
unburied or 
uncovered  sensor and f0 < 1 
Hz 

VS  
(NON-INVASIVE 

METHODS) 

sensor cut-off frequency < 
minimum frequency of 
dispersion curve    
 
maximum  wavelength of 
fundamental mode of Rayleigh 
wave / 2 > maximum reported 
depth 
 
surface layer thickness > 
minimum wavelength/3 (only 
for fundamental Rayleigh 
wave mode inversion) 
 
minimum reported  Vs is in the 
order range of  the minimum 
phase velocity 
 

sensor  cut-off frequency/2 < 
minimum frequency of 
dispersion curve < sensor cut-off 
frequency 
 
maximum  wavelength of 
fundamental mode of Rayleigh 
wave / 2 < maximum reported 
depth < maximum  wavelength 
of fundamental mode of Rayleigh 
wave 
 
surface layer thickness < 
minimum wavelength/3 (only for 
Rayleigh wave mode 0 inversion) 
 

sensor  cut-off frequency/2 
> minimum frequency of 
dispersion curve  
 
maximum  wavelength of 
fundamental mode of 
Rayleigh wave < maximum 
reported depth  
 
surface layer thickness < 
minimum wavelength/5 
(only for Rayleigh wave 
mode 0 inversion) 
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maximum reported  Vs  is in the 
order range of  the maximum 
phase velocity 
 

VP > Vs 
 

 

 

maximum reported   
Vs  >  3 maximum phase 
velocity 
 

VS > VP 

GEOLOGY 
geological survey or log  at the 
location of strong motion   

geological log far from the 
location of strong motion (> 
500 m) 

ENGINEERING 

BEDROCK DEPTH 
same as Vs(z)   

SEISMOLOGICAL 

BEDROCK DEPTH 

same as Vs(z) 
 
f0=Vs/4H does apply (within 
10%), with H the seismological 
bedrock depth 

same as Vs(z) 
 
Vs/4H does not provide f0 within 
20%, , with H the seismological 
bedrock depth 
 

same as Vs(z) 
 
Vs/4H does not provide f0 
within 20%, , with H the 
seismological bedrock 
depth 
 

VS30 

same as Vs(z) 
 
VS30 in the range of expected 
values of available 
local  studies (i.e. 
Microzonation studies or 
specific experiment in the 
same area) 

same as Vs(z) 
 
VS30 in the range of expected 
values as from comparative 
tables (i.e. Table 3 in Foti et al., 
2018, or EC8 prescription for 
ground type) 

same as Vs(z) 
 
VS30  out of the range of high 
and intermediate reliability 

SOIL CLASS same as VS30 and bedrock same as VS30 and bedrock same as VS30 and bedrock 

 

(d) Completeness of the report [1, 0.5 or 0] - it defines whether there exists a report describing step 
by step the field survey and the data processing to evaluate the target indicator. Please note that the 
presence of a detailed report is very important in eq. 1; in case of the absence of any report 
documenting the value of a given indicator, the corresponding quality_index1 is assigned a zero value. 
For sake of clarity, see the example of complete reports provided in Chapter 3. 

 

4.2.2 Quality_Index2 (overall characterization) 

Whereas Q_index#1 is computed through eq. 1 for each single mandatory indicator, Quality_Index2 
is a weighted sum computed on the Q_Index#1 of all indicators evaluated at the target site and varies 
from 0 to 1.  

The expression of Quality_Index2 is 

 Q_Index2=(w1 Q_Index1mandatory1 + w2 Q_Index1mandatory2 + .....+ wn Q_Index1mandatoryn) / 
(w1 + w2 …..+ wn)   (eq. 2)  

where  wi are the weights relative to a single mandatory indicator and n indicates the total number of 
mandatory indicators (n is equal to 7 as resulting from the questionnaire assuming a threshold value 
> 50%; see table 2.2). Note that even if not all the 7 indicators have been measured or inferred for a 
given site, the quality_index_2 will remain a weighted average of all the seven Q_Index1 values, the 
latter values being equal to 0 for all missing indicators. 
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Various options have been considered to assign the values of weights wi. One option was to derive 
them in direct link with the importance resulting from the survey (for instance wi = 2  (pi - 0.5) where 
pi is the "mandatory" percentage as displayed in Figure 2.1). However, following the suggestions from 
the international SERA workshop, we have questioned the robustness of such numbers (it could 
slightly vary for another set of answering individuals or teams); we then preferred to have three simple 
classes of weight as listed in Table 5.4: 

● A full weight of 1 for the two indicators considered as the most important from the survey, 
i.e., f0 and the velocity profile VS(z); 

● A half-weight of 0.5 for almost all other indicators, which correspond either to values derived 
from other primary measurements (e.g., VS30 and bedrock depth from velocity profile Vs(z) 
and f0), or to more qualitative information ("geology"); 

● A quarter weight (0.25) for indicator “site class”, as it is relatively qualitative and derives from 
other already weighted measurement (VS30, engineering bedrock depth). 

Because the weights are assumed to be constant values (Table 4.5) and once the Q_Index1 is defined 
for all the mandatory indicators (Table 5.1), the computation of Q_Index2 by eq. 2 is then 
straightforward and can be performed by non-specialist or networks operators.   

 
 Table 4.5. Weights of the mandatory indicators for computation of Quality_Index 2 (see eq. 2). 

INDICATOR IMPORTANCE FROM THE QUESTIONNAIRE WEIGHT WI 

F0 0,88 1 

VS30 0,64 0,5 

SURFACE GEOLOGY 0,61 0,5 

VS(Z) 0,72 1 

DEPTH OF SEISMOLOGICAL BEDROCK 0,57 0,5 

DEPTH OF ENGINEERING BEDROCK 0,55 0,5 

SOIL CLASS 0,57 0,25 

 

A plot of Q_Index2, as a function of various sets of available indicators, is shown in Figure 4.1. This 
trend was computed varying the b value of Q_Index1 (see eq. 1); i.e. b=2 for direct evaluation or b=0 
for inferred values. The Q_Index2 was computed by eq. 2 with all the other parameters (a, c and d in 
eq. 1) being kept equal to 1 and with the weights of Table 4.5. The resulting values of Q_Index2 were 
sorted in the plot of Fig. 4.1. from the maximum value.   
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Figure 4.1: Example of Quality_Index2 for various set of mandatory indicators. 
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4.2.3. Quality_Index3 (consistency) 

Quality_Index#3 (Q_Index3 hereinafter) refers to the overall consistency between the various 
indicators and varies from 0 to 1.  

Specifically, Q_Index3 evaluates consistency of various couples of indicators according to the current 
state of knowledge of the community. If estimates for a given couple of indicators (e.g f0 and VS30, 
geology and VS30, etc.) are not within the range of reported values, then these two estimates are 
considered as not consistent with one another. For example, if f0 is 1 Hz and seismic bedrock depth is 
10 m, most probably seismic bedrock depth or f0 are underestimated, unless detailed site 
characterization reports indicate very peculiar site (for the given example, extremely soft materials 
such as Mexico City lacustrine deposits). Since estimation of the various indicators (f0, Vs(z), VS30, 
surface geology, site class, seismological and engineering bedrocks) may be done by different research 
groups or practitioners, we recommend this evaluation to be performed by the network operator or 
an external expert.   

The consistency among various couple of indicators should be performed between the following 
mandatory indicators: f0, Vs(z), VS30, H800 (engineering bedrock), seismic bedrock depth and surface 
geology. This can be assessed through empirical relationships provided by scientific literature (some 
reference papers are listed in Table 4.6). However, because empirical relationships can refer to a 
specific area or database, the consistency should take into account all the local available studies (if 
any, for example in the context of microzoning or past research activity) near the target site to check 
the reliability between indicators and the similarities between multiple and independent 
measurements (e.g. measurements performed in the same area at different times, by different groups 
or using distinct methods).  

The computation of Q_Index3 is given by the sum of consistency values (2nd column of Table 4.6) 
among the five couples of indicators of Table 4.6 (n=5 in eq. 3), for which published references are 
available. The consistency at a specific site is computed only for the available indicators (e.g. if only 
VS30and geological information are reported for a site, then the consistency (cons) should be checked 
only for the couple VS30-surface geology).  

Q_Index3= [cons(f0, VS30) + cons(f0, seismic_bedrock_depth) + cons(f0, engineering_bedrock_depth) + 
cons(H800, VS30) + cons(VS30, geology)] / n       (eq. 3)  

Some examples of scatter plots between couples of indicators are given in the next section 4.3. 

 

Table 4.6. Consistency between couple of parameters; the consistency of each couple can be evaluated by 
empirical relations (see scatter plots in section 4.3). 

COUPLE OF INDICATORS 
POSSIBLE VALUE OF 

CONSISTENCY 
REFERENCES 

F0 - VS30 
0 No consistency 
1 consistency 

Ghofrani and Atkinson,2014; Luzi et al. 2011  

F0 - DEPTH OF SEISMIC BEDROCK 
0 No consistency 
1 consistency 

Derras et al., 2017; Luzi et al., 2011; Gosar and 
Lenart, 2010 

F0 - DEPTH OF ENGINEERING 

BEDROCK 
0 No consistency 
1 consistency 

Derras et al., 2017 

VS30 - H800 
0 No consistency 
1 consistency 

Derras et al., 2017 

VS30 - SURFACE GEOLOGY 
 

0 No consistency 
1 consistency 

Wills et al., 2000; Foti et al., 2018; Stewart et al. 
2014, Ahdi et al., 2017 ; Forte et al., 2019 

 

 



SERA    Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe 

D7.2 - Best practice and quality assessment guidelines for site characterization27 
 

4.3 Consistency of indicators couples 

There are numerous papers showing empirical relationships between the mandatory indicators: fo-
seismic bedrock (e.g. Ibs-Von Seht, 1999; Parolai et al., 2002; Hinzen et al., 2004; Gosar and Lenart, 
2009), f0-VS30 (e.g. Luzi et al., 2011; Gofhrani and Atkinson, 2014); f0-H800 (e.g. Derras et al., 2017), VS30-
surface geology (e.g. Wills et al., 2000; Stewart et al., 2014). However, because these empirical 
relationships usually refer to a specific area or database, we used 935 real Vs profiles composed of 602 
Japanese sites from Kiknet network (http://www.kyoshin.bosai.go.jp/), 243 Californian sites from 
Boore (2003) (http://quake.usgs.gov/~boore), 21 European strong-motion sites (Di Giulio et al., 2012), 
33 french sites (Hollender et al., 2018) and 36 italian sites from ITACA database (Luzi et al. 2019). List 
of stations are provided in Table 4.7. For those profiles having shear-wave velocity lower than 800 m/s 
in the deepest layer, we modified the Vs value in the deepest layer such as to reach 800 m/s. From this 
set of Vs profiles, we then computed VS30, site class, H800, f0 from the computed SH amplification using 
the reflectivity method (Kennet, 1983), and seismic bedrock depth by extracting the depth for which 
the resonance frequency provided by the Rayleigh’s method (Dobry et al., 1976) is similar to the 
measured f0 .  

 
Table 4.7. Station codes used for the scatter plots between various indicators (Table 4.6). 

NETWORK STATION CODE 
ITACA 
(LUZI ET AL. 2019) 

ALF ALT ARI ASG BRM BRZ CNG CRN CSC CSD CST DMN FRN GLD GSN LNG LRS MLC MLD MNS MTL MZR NAS NCS NZZ PGL PNN RCC RNC SGR SNG SRP 
STS TDG TLM2.B VLS2.B 

HOLLENDER ET AL., 
(2018) 

CALF GRN IRPV IRVG NALS NBOR OCKE OCOL OCOR OGAN OGAP OGBL OGCA OGCH OGDH OGFH OGIM OGLE OGMA OGME OGMU OGPC PYAS PYAT 
PYBB PYLI PYLO PYLU PYOR STBO STDM STSM SURF  

DI GIULIO ET AL., 
(2012) 

ATHENC ATHENS BENEVE CERETD CERRET COLFIO DUEZCn KORI_C KORI_D SAKARY cereto colfmo duezce edessa eurose forli. knidi. nestos nocera 
norcia sturno  

BOORE (2003) 

10128P 10128S ANDP.V ANSP.V ANSS.V AP1P.V AP1S.V AP2P.V AP2S.V APTP.V APTS.V BCSP.V BCSS.V BOCP.V BOCS.V BPBP.V BRAS.V BVAP.V Bpbs.v 
CALP.V CALS.V CCGP.V CCGS.V COEP.V COES.V COWP.V COWS.V COYP.V COYS.V COZS.V CPBP.V CPBS.V CRDP.V CRDS.V CRLP.V CRLS.V CRWP.V 
CRWS.V CSCP.V CSCS.V CTMS.V CVRP.V CVRS.V CXFSP. CXFSS. DIGP.V DIGS.V DPBP.V DPBS.V DZNP.V DZNS.V EC10P. EC10S. EC11P. EC11S. EC13P. 
EC13S. EC2P.V EC2S.V EC3P.V EC3S.V EC4S.V EC5S.V EC6P.V EC6S.V EC7P.V EC7S.V EC8P.V EC8S.V EC9P.V EC9S.V ECDAP. ECDAS. ELCP.V ELCS.V ELGS.V 
EMBP.V EMBS.V ESC2P. ESC2S. ESCS.V FFSS.V FMTP.V FMTS.V FRSP.V FRSS.V FTJP.V FTJS.V GIL2EP GIL2ES GIL2UP GIL2US GL7P.V GL7S.V GRVP.V 
GRVS.V GSTS.V GVDP.V GVDS.V HLR3P. HLR3S. HPOP.V HPOS.V HRSP.V HRSS.V HSTP.V HSTS.V I10P.V I10S.V ICSP.V ICSS.V JCKP.V JCKS.V JGBP.V JGBS.V 
JMBP.V JMBS.V KESS.V KNWS.V LADP.V LADS.V LAOP.V LAOS.V LFSP.V LFSS.V LFYP.V LFYS.V LISP.V LISS.V LLNP.V LLNS.V LVIP.V LVIS.V MCGS.V MCPP.V 
MCPS.V MDRP.V MDRS.V MGSP.V MGSS.V MTMP.V MTMS.V MWDS.V NPBS.V OBGP.V OBGS.V OHWP.V OHWS.V OVH2P. OVH2S. PA2P.V PA2S.V 
PFSP.V PFSS.V PGCS.V PHIP.V PHIS.V PNFS.V POTP.V POTS.V PPPS.V PUTP.V PUTS.V RD7S.V RDLP.V REDP.V REDS.V RINP.V RINS.V RIOP.V RIOS.V 
RSEP.V RSES.V RVMP.V RVMS.V SB1P.V SB1S.V SCAP.V SCAS.V SCWS.V SFOP.V SFOS.V SFSP.V SFSS.V SIMP.V SIMS.V SLACP. SLACS. SMSP.V SMSS.V 
SMWS.V SOPP.V SOPS.V SOWP.V SOWS.V SPKP.V SPKS.V STMP.V STMS.V SUBP.V SUBS.V SVAP.V SVAS.V TACP.V TACS.V TARP1. TARS1. TRAP2. TRAS2. 
TRIP.V TRIS.V TWPS.V VAHS.V VARP.V VARS.V VCGP.V VCGS.V VTGP.V VTGS.V VYCP.V VYCS.V WDSP.V WDSS.V WEBP.V WEBS.V WFSP.V WFSS.V 
WHRP.V WHRS.V WILS.V WMRP.V WMRS.V WOCP.V WOCS.V WTPP.V WTPS.V WVANP. WVANS. WVASP. WVASS. WWDP.V WWDS.V mwdp.v  

KIKNET 

ABSH02 ABSH03 ABSH04 ABSH05 ABSH06 ABSH07 ABSH08 ABSH09 ABSH10 ABSH11 ABSH12 ABSH13 ABSH14 ABSH15 AICH04 AICH05 AICH06 AICH07 
AICH08 AICH09 AICH10 AICH11 AICH12 AICH14 AICH15 AICH16 AICH17 AICH18 AICH19 AICH20 AICH21 AICH22 AKTH01 AKTH02 AKTH03 AKTH04 
AKTH05 AKTH06 AKTH07 AKTH08 AKTH09 AKTH10 AKTH11 AKTH12 AKTH13 AKTH14 AKTH15 AKTH16 AKTH17 AKTH18 AKTH19 AOMH01 AOMH02 
AOMH03 AOMH05 AOMH06 AOMH07 AOMH08 AOMH09 AOMH10 AOMH11 AOMH12 AOMH13 AOMH14 AOMH15 AOMH16 AOMH17 AOMH18 
CHBH14 CHBH16 EHMH01 EHMH02 EHMH03 EHMH04 EHMH05 EHMH06 EHMH07 EHMH08 EHMH09 EHMH10 EHMH11 FKIH01 FKIH02 FKIH03 
FKIH04 FKIH05 FKIH06 FKIH07 FKOH01 FKOH02 FKOH03 FKOH04 FKOH05 FKOH06 FKOH07 FKOH08 FKOH09 FKSH01 FKSH02 FKSH03 FKSH04 FKSH05 
FKSH06 FKSH07 FKSH08 FKSH11 FKSH12 FKSH13 FKSH14 FKSH15 FKSH16 FKSH17 FKSH18 FKSH19 GIFH03 GIFH04 GIFH05 GIFH06 GIFH07 GIFH08 
GIFH09 GIFH10 GIFH11 GIFH12 GIFH13 GIFH14 GIFH15 GIFH16 GIFH17 GIFH18 GIFH19 GIFH20 GIFH21 GIFH22 GIFH23 GIFH24 GIFH25 GIFH26 GIFH27 
GIFH28 GIFH29 GNMH07 GNMH08 GNMH09 GNMH10 GNMH11 HDKH01 HDKH02 HDKH03 HDKH04 HDKH05 HDKH06 HDKH07 HRSH01 HRSH02 
HRSH03 HRSH04 HRSH05 HRSH06 HRSH07 HRSH08 HRSH09 HRSH10 HRSH11 HRSH12 HRSH13 HRSH14 HRSH15 HRSH16 HRSH17 HRSH18 HYGH01 
HYGH02 HYGH03 HYGH04 HYGH05 HYGH06 HYGH07 HYGH08 HYGH09 HYGH10 HYGH11 HYGH12 HYGH13 HYGH14 HYGH15 HYMH01 HYMH02 
HYMH03 IBRH11 IBRH12 IBRH13 IBRH14 IBRH15 IBRH16 IBRH17 IBRH18 IBUH01 IBUH02 IBUH03 IBUH04 IBUH05 IBUH06 IBUH07 IKRH01 IKRH02 
IKRH03 ISKH01 ISKH03 ISKH06 ISKH08 ISKH09 IWTH01 IWTH02 IWTH03 IWTH04 IWTH05 IWTH06 IWTH07 IWTH08 IWTH09 IWTH10 IWTH11 IWTH12 
IWTH13 IWTH14 IWTH15 IWTH16 IWTH17 IWTH18 IWTH19 IWTH20 IWTH21 IWTH22 IWTH23 IWTH24 IWTH25 IWTH26 IWTH27 KGSH01 KGSH02 
KGSH03 KGSH04 KGSH05 KGSH06 KGSH07 KGSH09 KGSH10 KGSH11 KGSH12 KGSH13 KGWH01 KGWH02 KGWH03 KGWH04 KKWH01 KKWH02 
KKWH03 KKWH04 KKWH05 KKWH06 KKWH07 KKWH08 KKWH09 KKWH10 KKWH11 KKWH12 KKWH13 KKWH14 KKWH15 KMMH01 KMMH02 
KMMH03 KMMH04 KMMH05 KMMH06 KMMH07 KMMH08 KMMH09 KMMH10 KMMH11 KMMH12 KMMH13 KMMH14 KMMH15 KMMH16 
KMMH17 KNGH18 KNGH19 KNGH20 KNGH21 KOCH01 KOCH02 KOCH03 KOCH04 KOCH07 KOCH08 KOCH10 KOCH11 KSRH01 KSRH02 KSRH03 KSRH04 
KSRH05 KSRH06 KSRH07 KSRH08 KSRH09 KSRH10 KYTH01 KYTH02 KYTH04 KYTH05 KYTH06 MIEH01 MIEH02 MIEH03 MIEH04 MIEH05 MIEH06 MIEH07 
MIEH08 MIEH09 MIEH10 MYGH01 MYGH02 MYGH03 MYGH04 MYGH05 MYGH06 MYGH07 MYGH08 MYGH09 MYGH10 MYGH11 MYGH12 MYZH01 
MYZH02 MYZH03 MYZH04 MYZH06 MYZH07 MYZH08 MYZH09 MYZH10 MYZH11 MYZH12 MYZH13 MYZH14 MYZH15 MYZH16 NARH01 NARH02 
NARH03 NARH04 NARH05 NARH06 NARH07 NGNH08 NGNH09 NGNH10 NGNH11 NGNH13 NGNH14 NGNH15 NGNH16 NGNH17 NGNH18 NGNH19 
NGNH20 NGNH21 NGNH22 NGNH23 NGNH24 NGNH25 NGNH26 NGNH27 NGNH28 NGNH29 NGNH30 NGNH31 NGNH32 NGNH33 NGNH35 NGSH01 
NGSH02 NGSH03 NGSH04 NGSH05 NIGH02 NIGH03 NIGH04 NIGH05 NIGH06 NIGH07 NIGH08 NIGH09 NIGH10 NIGH11 NIGH12 NIGH13 NIGH14 
NIGH15 NIGH16 NIGH17 NIGH18 NIGH19 NMRH01 NMRH02 NMRH03 NMRH04 NMRH05 OITH01 OITH02 OITH03 OITH05 OITH06 OITH07 OITH08 
OITH09 OITH11 OKYH01 OKYH03 OKYH04 OKYH05 OKYH06 OKYH07 OKYH08 OKYH09 OKYH10 OKYH11 OKYH12 OKYH13 OKYH14 OSKH01 OSKH02 
OSKH03 OSKH04 OSMH01 OSMH02 RMIH01 RMIH02 RMIH03 RMIH04 RMIH05 SAGH01 SAGH02 SAGH03 SAGH04 SAGH05 SBSH08 SBSH09 SIGH01 
SIGH02 SIGH03 SIGH04 SITH05 SITH06 SITH07 SITH08 SITH09 SITH10 SITH11 SMNH01 SMNH02 SMNH03 SMNH04 SMNH05 SMNH06 SMNH07 
SMNH08 SMNH09 SMNH10 SMNH11 SMNH12 SMNH13 SMNH14 SMNH15 SMNH16 SOYH01 SOYH02 SOYH03 SOYH04 SOYH05 SOYH06 SOYH07 
SOYH08 SOYH09 SOYH10 SRCH01 SRCH02 SRCH03 SRCH04 SRCH05 SRCH06 SRCH07 SRCH08 SRCH09 SRCH10 SZOH24 SZOH25 SZOH28 SZOH29 
SZOH30 SZOH31 SZOH32 SZOH33 SZOH34 SZOH35 SZOH36 SZOH37 SZOH38 SZOH39 SZOH40 SZOH41 SZOH42 SZOH43 TCGH07 TCGH08 TCGH09 
TCGH10 TCGH11 TCGH12 TCGH13 TCGH14 TCGH15 TCGH16 TKCH01 TKCH02 TKCH03 TKCH04 TKCH05 TKCH06 TKCH07 TKCH08 TKCH10 TKCH11 
TKSH01 TKSH03 TKSH04 TKSH05 TKYH12 TKYH13 TTRH01 TTRH02 TTRH03 TTRH04 TTRH05 TTRH06 TTRH07 TYMH01 TYMH02 TYMH05 TYMH06 
TYMH07 WKYH01 WKYH02 WKYH03 WKYH04 WKYH05 WKYH06 WKYH07 WKYH08 WKYH09 WKYH10 YMGH01 YMGH02 YMGH03 YMGH04 YMGH05 
YMGH06 YMGH07 YMGH08 YMGH09 YMGH10 YMGH11 YMGH12 YMGH13 YMGH14 YMGH15 YMGH16 YMGH17 YMNH09 YMNH10 YMNH11 
YMNH12 YMNH13 YMNH14 YMTH01 YMTH03 YMTH04 YMTH05 YMTH06 YMTH07 YMTH08 YMTH09 YMTH10 YMTH11 YMTH12 YMTH13 YMTH14 
YMTH15  
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Scatter plots for the different set of indicators (Table 4.6) computed on the 935 sites are indicated in Figure 
4.2 (f0 - Vs30), Figure 4.3 (f0 - depth of seismic bedrock), Figure 4.4 (f0 - depth of engineering bedrock) 
and Figure 4.5 (depth of engineering bedrock - VS30). The color scale in the figures is scaled to soil class 
category following EC8 prescriptions: 1 (dark blue) class A, 2 (light blue) class B, 3 (green) class C, 4 
(orange) class D and 5 (yellow) class E. 
 

 

 

Fig. 4.2. Scatter plot for the couple of indicators (f0 - Vs30). 

 

 

Figure 4.3: Scatter plot for the couple (f0-depth of seismic bedrock). 
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Fig. 4.4. Scatter plot for the couple (f0-depth of engineering bedrock). 

 

 

Figure 4.5: Scatter plot for the couple (depth of engineering bedrock - VS30). 

 

Note that the couple (depth of seismic bedrock - Vs30) was reported in Fig. 4.6 for completeness. However, we 
prefer to not consider it in the consistency check of Table 4.6 because the scatter plot does not show 
a clear trend between these two indicators: this behavior is likely because the Vs30 value is related to 
the depth of seismic bedrock  only when the stiff interface is very shallow (i.e. at a depth < 30 m). 
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Fig. 4.6. Scatter plot for the couple (depth of seismic bedrock - V30). Please note that this couple was not used 
in the consistency check (Table 4.6) 

About the correlations between VS30 and surface geology, this is even more difficult to represent in a 
single scatter plot because the geology, which is very region dependent,  can be described in several 
ways; for example using geological maps at various space scale or using lithological or geological 
description that are correlated in first approximation to VS30 values. In any case, we recommend to 
verify at the target site the consistency between VS30 and local geology using expected values of 
velocity ranges for typical soils and rocks (Fig. 4.7 and Table 4.8) as provided by a priori information 
and past studies (for example in the context of microzonation activities or from existing geotechnical-
engineering database).  

 

Table 4.8. Expected value of shear-wave velocities for soils and rocks; extracted from Table 3 of Foti et al. 2018. 
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Fig. 4.7. Histogram showing VS30 distribution for Greek sites sorted by geological age. The profile database 
consisted of 341 sites in Greece. Redrawn from Stewart et al. 2014. 

 

 

4.4 Final Quality Index 

The final quality index is computed as the arithmetic mean between Q_Index2 (eq. 2) and Q_Index3.  

Final_Quality_Index = (Q_Index2 + Q_Index3)/2              (eq. 3) 

The range of values of Final_Quality_Index is spanning from 0 to 1. A value of 1 is for a site with a very 
thorough and reliable seismic characterization, 0 is assigned to a site badly or not characterized. 
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4.5 Example of Quality Metrics Computation 

This example is referring to three generic sites: 

● Site A: all indicators are well estimated  except the confidence on depth of seismic bedrock 
that is intermediate; 

● Site B: as Site A, except that confidence on Vs(z) is low. As a consequence, reliability of VS30,  
soil class and depth of engineering and seismic bedrock is low; 

● Site C: there available only very good information on f0; 

 

Q_Index1. For each indicator, the values of a, b, c and d are assigned following chapter 4.2.1. 

 

f0 
 SITE-A SITE-B SITE-C 

method a=[0;1] 1 1 1 

direct or not b=[0;2] 2 2 2 

reliability c=[0;0.5;1] 1 1 1 

report d=[0;0.5;1] 1 1 1 

  1,00 1,00 1,00 

 

Vs(Z)  SITE-A SITE-B SITE-C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability c=[0;0.5; 1] 1 0 0 

report d=[0;0.5;1] 1 1 0 

  1,00 0,75 0,00 

 

VS30  SITE-A SITE-B SITE-C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability c=[0;0.5;1] 1 0 0 

report d=[0;0.5;1] 1 1 0 

  1,00 0,75 0,00 

 

 

surface geology  SITE-A SITE-B SITE-C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability c=[0;0.5;1] 1 1 0 

report d=[0;0.5;1] 1 1 0 

  1,00 1,00 0,00 
 

 

depth of engin. 
bedrock  

SITE-
A 

SITE-
B 

SITE-
C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability d=[0;0.5;1] 1 0 0 

report c=[0;0.5;1] 1 1 0 

  1,00 0,75 0,00 

 

depth of seismic 
bedrock  

SITE-
A 

SITE-
B 

SITE-
C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability d=[0;0.5;1] 0,5 0 0 

report c=[0;0.5;1] 1 1 0 

  0,88 0,75 0,00 

 

soil class  SITE-A SITE-B SITE-C 

method a=[0;1] 1 1 0 

direct or not b=[0;2] 2 2 0 

reliability d=[0;0.5;1] 1 0 0 

report c=[0;0.5;1] 1 1 0 

  1,00 0,75 0,00 
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Q_Index2. It is computed by using the  eq. 2, based on the Q_Index1 values assigned previously, and 
with the weights following Table 4.5 

  Q1_SITE-A Q1_SITE-B Q1_SITE-C 

weight f0= 1 1 1 1 

weight Vs(z)= 1 1 0,75 0 

weight  VS30= 0,5 1 0,75 0 

weight surface geology= 0,5 1 1 0 

weight depth of seismic bedrock= 0,5 0,88 0,75 0 

weight depth of eng bedrock= 0,5 1 0,75 0 

weigh soil class= 0,25 1 0,75 0 

sum-weight= 4,25    

Q_Index2=  0,99 0,84 0,24 

 
Q_Index3. The consistency between the four couples of indicators is assigned based on eq. 3 and 
Table 4.6.  

 SITE-A SITE-B SITE-C 

f0-VS30 1 1 0 

f0-H seismic bedrock 1 1 0 

Vs(z)-VS30 1 1 0 

VS30-surface geology 1 1 0 

    

Q_Index3= 1 1 0 

 

 

Final_Q_Index. The Final Quality Index is given by eq. 4.  

Final Quality Index SITE-A SITE-B SITE-C 

 0,99 0,92 0,12 
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6 Appendix A: bibliography and methodologies 

Appendix A summarizes the bibliography related to indicators and methodologies used in seismic 
characterization analysis. Although it is not exhaustive, it should be intended as an indicative summary 
of references and guidelines for the best practice of measurement and analysis, as collected within 
the SERA NA5 activities and integrating the Bibliography of the main text. 

The list of Indicators we refer to in this Appendix, is shown in Table 1, followed by the Bibliography 
grouped according to  their affinity. 

 

 

Table 1 - List of site-effect indicators, as derived from the first  Questionnaire. Number indicates the group where 
to find the Bibliography. 

Scalar parameters Group 

f0 (resonance frequency) 1 

f1, f2, …..fn(higher frequency peaks) 1 

Vsz (average Vs at different depth=5, 10, 20 m) 2 

VS30 (seismological or geological) 2 

Vs_seismic_bedrock and H_seismic_bedrock (Vs and depth of the seismic bedrock) 2 

H800 or H1000 (depth at Vs= 800 m/s or 1000 m/s)  

Kappa0 3 

A0, A1 … amplitude from HV, SSR and HVnoise  1 

Site Classification 4 

Depth-dependent parameters  

Vs(z), Vp(z) profile from non-invasive measurements 2 

Non linear curves (normalized stiffness modulus G/G0-shear strain and damping 
D-shear strain curves) 

5 

Geotechnical Parameters 5 

CRR (cyclic resistance ratio) 5 

Water table depth  

Frequency-dependent parameters  

Directional amplification  1 

Curve of spectral ratio (from earthquake or noise) 1 

Ground motion polarization  1 

Dispersion curve 2 

Rayleigh wave ellipticity curve 2 

Fa, Housner Intensity (amplification factors)   

Kappa and Q 3 

non linearity potential (resonance frequency shift and amplitude variation as a 
function of earthquake magnitude) 

 

Geological/Morphological attributes  

Surface geology 6 

Geo-stratigraphic 1D profile (multidisciplinary characterization) 6 

(3D) Geological conceptual model 6 
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Slope, ridge, topographic-geometrical factors 6 

terrain categories (geomorphometry)  6 

Geometrical parameter with respect to a basin and Near-surface heterogeneities 
(any parameter related with 2D or 3D structure (surface topography or 
underground) 

6 

Advanced site effects indicators  

transfer function from 1D/2D/3D numerical modeling 7 

1D/2D/3D resonance behavior and normal modes  

Site transfer amplification function, f0 1 

Aggravation  factors for basin or topography (e.g. the ratio between 2D, or 
recorded motion, and 1D acceleration response spectra at the basin surface) 

7 

2D/3D site effects (including basin effects)  

Vs profile and Vs(x,y,z)  

Empirical TF from downhole arrays  

duration lengthening (frequency-dependent lengthening of seismic ground-
motion duration) 

 

 

 

6.1 Indicators of Group 1 

TYPE OF INDICATOR 
f0 (resonance frequency) 
f1, f2, …..fn (higher frequency peaks) 
A0, A1 … amplitude from HV (noise and earthquake), SSR (earthquake) 
Site transfer amplification function 
Preferential direction of Ground motion  
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6.6  Indicators of Group 6 
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7 Appendix B: Templates for intermediate report 

The template proposed in these Guidelines is a scheme for an intermediate report of a computed 
indicator at a specific site, having the minimum background information for assessing the quality of 
the results. It is not replacing a complete site characterization report, whereas it as to be intended as 
a recommendation to homogenize information especially for seismic network metadata.  

The general structure of the intermediate report contains 4 main sections: the first one with general 
information, the last one with the resulting value of the indicator including uncertainty estimation 
and, in between the two, the description of the main parameters of the data acquisition and analysis.  

In the following are the templates for the selected mandatory indicators:  f0, Vs(z), Vs30,  Depth of 
seismological and engineering bedrock, Surface geology, Soil class. 

 

B1 - REPORT TEMPLATE for f0 

B2. REPORT TEMPLATE for Velocity profile VS(z) 

B3. REPORT TEMPLATE for Vs30 

B4. REPORT TEMPLATE for GEOLOGY 

B5. REPORT TEMPLATE for BEDROCK DEPTH 

B6. REPORT TEMPLATE for SOIL CLASS (equivalent to GROUND TYPE or SITE CLASS) 
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7.1 B1. REPORT TEMPLATE for f0

1. GENERAL INFORMATION

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY] 

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

2. DATA

[a] [b] 

Microtremor 
recordings 

Earthquake 
recordings 

3. EQUIPMENT

Sensor type (velocimeter, accelerometer, geophones, 
etc) 

Sensor components (3C, vertical, horizontal) 

Sensor cutoff frequencies [Hz] 

Sensor Manufacturer 

Recorder Manufacturer 

4. INSTRUMENTAL SETTING

Dates of experiment [DD/MM/YY – DD/MM/YY] 

duration of acquisition [min] 

Location map 

picture 

ground-sensor coupling (Earth/asphalt/artificial) 
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Anthropogenic noise source 
(type/distance/direction) 

Weather conditions (Sunny/windy/rain) 

Urbanization (Dense/scattered/rural) 

5. PROCESSING [list of examples of used techniques and related info for processing]

[a] - Noise

Acquisition Processing (method) Processing (parameters) 

Single 
station 

Horizontal-to-Vertical 
spectral ratio (H/V) 

Signal length [s]: 
Figure with H/V curve or ellipticity curve (mean ± 
1std): 
Software:  Rayleigh ellipticity from H/V 

[b] - Earthquakes

Acquisition Processing (method) Processing (parameters) 

Single station H/V Phase (P, S, Coda, S+coda): 
Number of earthquakes: 
Magnitude range: 
Reference site location (Lat, Lon): 
Software: 
Figure with SSR or H/V curve 
(mean±1std)  

Couple site and reference 
(including reference at downhole) 

Standard spectral ratio 
(SSR) 

Regional networks Generalized Inversion / 
Spectral inversion 
techniques 

Reference paper: 
Number of stations: 
number of events: 
Figure with site transfer function 
(mean±1std) 

6. RESULTS

f0 [Hz] value 

± std [Hz]  

AND/OR 

frequency band (fmin and fmax) around the peak [Hz] Uncertainty 

Preferred direction of f0 [deg] 

Selection criteria (SESAME criteria for H/V on noise, transfer 
function > 2 for H/V and SSR on earthquakes, other) 
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Single parameter Quality index Q1 value (SERA guidelines) 
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7.2 B2. REPORT TEMPLATE for Velocity profile VS(z)

1. GENERAL INFORMATION

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY] 

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

2. DATA

[a] non-invasive (active and/or passive seismic
methods)

[b] invasive (measurement in
boreholes)

Active surface waves Down-hole 

Passive surface waves Cross-hole 

Surface- or body- wave tomography PS-logging 

 Other Other 

3. EQUIPMENT

Sensor Invasiv
e 

non-invasive 
(passive) 

non-invasive 
(active) 

Sensor type (velocimeter, accelerometer, 
geophones, etc) 

Sensor components (3C, vertical, horizontal) 

Sensor cutoff frequencies (Hz) 

Sensor Manufacturer 

Recorder Manufacturer 

4. INSTRUMENTAL SETTING
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Invasive non-invasive 
(passive) 

non-
invasive 
(active) 

Dates  of experiment [DD/MM/YY – DD/MM/YY] 

ground-sensor coupling (Earth/asphalt/artificial) 

Anthropogenic noise source (type/distance/direction) 

Weather conditions (Sunny/windy/rain) 

Urbanization (Dense/scattered/rural) 

Location map 

picture of experiment 

Number of sensors, geophones 

min/max sensors/geophones spacing (horizontal or 
vertical)   

duration of acquisition [min] 

Source offsets range 

type of active source (explosive, hammer, Vibroseis, …) 

Number of boreholes 

Distance between boreholes 

Depth of borehole 

5. PROCESSING [examples of used techniques and related info for processing]

[a] - Invasive

Acquisition Processing (method) Processing (parameters) 

Down-hole 
P- and S-waves time arrival inversion
(ASTM  D7400-08,  2008)

number of measurement depths 
and depth interval:  
Stacking number: 
wave type (SH, SV, P): 
Figure with Vs, Vp profiles 

Cross-hole 
P- and S-waves time arrival direct
modeling (ASTM  D4428M-00  S, 2000)

Suspension PS 
logging 

number of measurement depths 
and depth interval:  
Figure with Vs, Vp profiles: 
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Other   

 
[b] - Non-Invasive 

Acquisition Processing (method) Processing (parameters) 

Active, 
Refraction  

 
software 

Active, array 
Multichannel Analysis of 
Surface Waves (MASW) 

Modes (Rayleigh and/or Love wave): 
Minimum & Maximum wavelength 
(fundamental mode) of the dispersion curves 
(DC)  to be inverted [m]: 
Minimum & Maximum frequency: 
Software: 
Figure with DC curve measured and inverted: 
Figure with Vs inversion: 

Passive, Array 
F-K and variants, SPAC and 
variants, Cross-Correlation, 
Other 

H/V inversion  
Diffuse Field Assumption 
Rayleigh wave ellipticity 
SH assumption  

Phase (noise/earthquake coda/earthquake S-
wave): 
 Signal length[s]: 
Number of earthquakes: 
Software:  
Figure with H/V measured and inverted: 
Figure with Vs inversion: 

Surface-wave 
inversion 

Linearized inversion 
Stochastic inversion 
(Montecarlo, etc.)  

Type of inversion (simple or joint): 
Software: 
Reference paper for inversion: 
Figure with Vs inversion: 

 

7. RESULTS 

VS model (table) for each layer: Depth top and bottom [m], VS [m/s], Uncertainty 

 
where Uncertainty is:  
VS_min and VS_max [m/s]   

AND/OR   
± std [m/s]  

AND/OR 
 Set of representative  Vs(z) 

radius of interest 
[m] 

radius of interest of the model used to infer the VS  model (i.e. array 
aperture if inferred from non-invasive measurements) 

Single parameter 
Quality index Q1 value (SERA Guidelines) 
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7.3 B3. REPORT TEMPLATE for Vs30

1. GENERAL INFORMATION

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY] 

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

2. DATA

[a] [b] [c] [d] [e] 

Geophysical 
measurements 

Geotechnical 
measurements 

DEM (Digital 
Elevation 
Model) 

Geolog
y 

Hybrid models 

(e.g. geology‐slope or 
geomorphic terrain‐based 
proxy) 

3. PROCESSING [list of examples of used techniques and related info for processing]

[a] Geophysical measurements

Acquisition Processing (method) Processing (parameters) 

Vs(z) from any method 
(invasive or non-
invasive) 

Time averaged on 
measured Vs 

Reference  (report/paper/correlation to 
obtain VS30…): 
Used techniques to compute Vs-profile or 
Dispersion Curve: 
Software: 

Dispersion curve in the 
Vs – wavelength plane 

Approximation VS30 ≈ 
VR (λ= 40-45 m) 

[b] Geotechnical measurements
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Acquisition Processing (method) Processing (parameters) 

SPT, CPT, Cu, 
etc… 

Correlation geotechnical 
parameters – VS30 

Reference (report/paper/correlation to 
obtain VS30…): 
Software: 

 

[c] DEM (Digital Elevation Model) 

Acquisitio
n 

Processing (method) Processing (parameters) 

DEM 

Correlation geomorphic terrain 
classification - VS30 

Cartography (reference): 
DEM Resolution: 
Slope Range: 
Slope: 
Reference (report/paper/correlation to 
obtain VS30…): 
Software: 

 
[d] - Geology  

Acquisition Processing (method) Processing (parameters) 

geological 
map 

Correlation geologic 
units - VS30 
 

Cartography (reference): 
Scale: 
Sheet: 
Geologic/lithologic unit: Name, Age, Rock mass 
structure, Thickness 
 
Reference (report/paper/correlation to obtain VS30…): 
Software: 

stratigraphic 
log 

Log Depth: 
STRATIGRAPHY VALUE (Table with: Top depth, Bottom 
depth, Unit description) 
Reference (report/paper/correlation to obtain VS30…): 
Software: 

 

4. RESULTS 

VS30 [m/s] 
time averaged over the top 30 
m 

± std [m/s]  variability estimate 
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AND/OR 

min and max VS30 [m/s] 

Single parameter Quality 
index Q1 value (SERA Guidelines) 
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7.4 B4. REPORT TEMPLATE for GEOLOGY 

1. GENERAL INFORMATION 

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY]    

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

 
2. DATA 

[a] [b] 

Cartography (geological, DEM, 
lithological...) 

Field 
survey 

 
3. PROCESSING [list of examples of used techniques and related info for processing] 

Acquisition 
Processing 
(method) 

Processing (parameters) 

geological map (raster 
images, vector graphics) 

Cartographic 
information  

Cartography type (reference): 
Scale: 
Sheet: 
 
Geologic/lithologic unit (Name, Description, 
Age, Rock mass structure, Thickness): 
fault presence: 
water table: 
weathering: 
cross-section: 

Field survey 

Cartographic 
information  

DEM map (raster images, 
vector graphics) 

Analysis of raster 
images 

Cartography type (reference): 
DEM Resolution: 
Slope Range: 
Slope: 

stratigraphic log 
geological unit 
interpretation 

Log Depth: 
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STRATIGRAPHY VALUE (Table with: Top 
depth, Bottom depth, Unit description) 

4. RESULTS

Thematic map 
Cartography type (e.g. geological lithotechnical, 
lithological......): 
Scale: 
Sheet: 
figure 

Prevalent Geologic/lithologic unit 
description: 

unit name and general description: 
Age:  
Thickness: 
Rock mass structure: 
stratigraphic log (if available):  

Morphological description 
Slope Range: 
Slope: 

Single parameter Quality index Q1 value (SERA Guidelines) 
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7.5 B5. REPORT TEMPLATE for BEDROCK DEPTH

1. GENERAL INFORMATION

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY] 

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

2. TYPE

[1] [2] 

Seismological bedrock 

(depth of the impedance contrast related to the 
lowest resonance frequency peak) 

Engineering bedrock 

(depth corresponding to a given Vs value 
according to the seismic codes) 

3. DATA

[a] [b] 

non-invasive (active and/or passive seismic 
methods)  

invasive (measurement in 
boreholes) 

4. PROCESSING [list of examples of used techniques and related info for processing]

Acquisition Processing (method) Processing (parameters) 

Down-hole, Cross-
hole, etc 

Vs-Vp profile/model Figure with Vs, Vp profiles: 
Reference (report/paper/…): 
Used techniques to compute 
velocity profile: 
Software: MASW, seismic array, 

single-station H/V 

Microtremor 
recordings, 
Earthquake 
recordings, 

relationship of fundamental 
frequency f0 - depth/thickness  (for 
seismological bedrock only) 

f0: 
Figure with site transfer function 
(mean±1std): 
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 Reference 
(report/paper/relationship to 
obtain depth/…): 
 

 geological information  
inferred depth corresponding to a 
geological substratum  

Figure with inferred Stratigraphic 
log: 
Reference 
(report/paper/relationship to 
obtain depth…): 

stratigraphic log 
relationship of lithology – seismic 
velocity profile 

Figure with Stratigraphic log: 
Reference 
(report/paper/relationship to 
obtain depth…): 

Other techniques 
(gravity, seismic 
refraction, TDEM, etc.) 

 
 

 

7. RESULTS 

Bedrock Depth [m] Depth of  seismological or engineering or geological bedrock 

± std [m]  

AND/OR 

min and max depth 
having Vs_bed [m] 

Depth variability estimate 

Vs_bed [m/s] Vs of seismological/engineering bedrock  

radius of interest [m] radius of interest of the model used to infer the bedrock depth (i.e. 
array aperture if inferred from non-invasive measurements) 

Reference building code 
for site classification  

(EC8-1, EC8-2, national code, …) 

Single parameter Quality 
index 

Q1 value (SERA Guidelines) 
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7.6 B6. REPORT TEMPLATE for SOIL CLASS*

*equivalent to GROUND TYPE or SITE CLASS

1. GENERAL INFORMATION

Authors 

Contacts (mail, Institution) 

Link to reports, papers 

Compiling date [DD/MM/YY] 

Coordinates (WGS84) [Latitude, Longitude, Elevation] 

Station name, Network code, Distance [m] of the closest seismological station, if 
any  

Notes 

2. DATA

[a] [b] [c] [d] 

Geophysical 
measurements 

Geotechnical 
measurements 

DEM (Digital Elevation 
Model) 

Geolog
y 

3. PROCESSING [in this section we list examples of used techniques and related info for processing]

Acquisition Processing (method) 

 from building code 
prescription 

Processing (parameters) 

Geophysical 
measurements 

relationship of VS30 (from Vs 
profile) - soil class 

VS30 value: 
Heng_bedrock 
f0 

Used DEM scale: 

geologic units: 
stratigraphy: 

Reference of processing method 
(report/paper/relationship to obtain soil 
class …): 
Software: 

Geotechnical 
measurements 

relationship of VS30 (from 
correlation with geotechnical 
parameters) - soil class  

DEM (Digital 
Elevation Model) 

relationship of VS30 (from 
correlation with geomorphic 
terrain ) - soil class 

Geology relationship of VS30 (from 
correlation with geologic units) 
- soil class
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4. RESULTS

Soil class (A,B,...) 

Reference building code for site 
classification 

(EC8-1, EC8-2, NEHRP, national code, 
…) 

Single parameter Quality index Q1 value (SERA Guidelines) 
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